

Is It Really Grid-Forming? Findings from a cross-vendor tests of grid-forming converters

Soenke Rogalla, Roland Singer Fraunhofer ISE 3rd September 2024 ECCE Europe Conference, Darmstadt

Control of Electrical Power Systems

Fundamentals

- An electrical power system connects multiple generators and loads.
- At any moment, generation and load must be balanced.
- Voltage amplitude and frequency must be controlled and kept within defined limits.
- Active and reactive power are the control variables.
- The dynamic behaviour of electrical power systems is mainly defined by the inertia of the system.

Today's control and protection concepts are based on the electrical behaviour of the **synchronous generator**.

Motivation

Replacement of Synchronous Generators by Converters

Synchronous Generators:

Inherent voltage source behaviour Inertia for rotating masses High overload capability

Converters:

Freely programmable electrical behaviour High dynamic controllable Hardly overloadable

"Electronification" of the Power Grids

Challenges for a Stable Operation of the Energy System

Ranking of the power system stability issues as identified by European TSOs

	Ranking	Score		
	1	17.35		
	2	10.16	Resonances due to cables and Power electronics	
	3	9.84	Reduction of transient stability margins	
	4	8.91	Missing or wrong participation of PE-connected generators and loads in frequency containment	
	5	8.19	PE Controller interaction with each other and passive AC components	Dynamic
	6	7.50	Loss of devices in the context of fault-ride-through capability	
	7	7.00	Lack of reactive power	Interactio
	8	6.91	Introduction of new power oscillations and/or reduced damping of exis power oscillations	
	9	6.09	Excess of reactive power	between IBRs and t
	10	4.27	Voltage Dip-Induced Frequency Dip	grid cause the bigg
	11	3.87	Altered static and dynamic voltage dependence of loads	concerns

Sources:

©Fraunhofer ISE

ENTSO-E report "High Penetration of Power Electronic Interfaced Power Sources (HPoPEIPS)", Jan 2020 MIGRATE project: Deliverable 1.1, 'Report on systemic issues. [online]: https://www.h2020-migrate.eu/.'.

ne

est

Sources: http://gridradar.net/, www.energy-charts.info,

https://www.entsoe.eu/news/2021/01/15/system-separation-in-the-continental-europe-synchronous-area-on-8-january-2021-update)

outh-Fast area

System Split

What are Grid-Forming Converters?

Grid-Forming Converters

Requirements

GFC should enable stable grid operation without synchronous generators.

"<u>Grid Forming Converters</u> shall be capable of supporting the operation of the AC power system (from EHV to LV) <u>under</u> <u>normal, disturbed and emergency states</u> <u>without having to rely on capabilities from</u> <u>Synchronous Generators (SGs). This shall</u> include the capabilities for stable operation for the extreme operating case of supplying the complete demand from <u>100% converter-based power sources</u>." ¹ [HPoPEIPS Report.]

Required feature of GFC according to HPoPEIPS report:

- Creating system voltage
- Contributing to fault level
- Sink for harmonics
- Sink for unbalance
- Contribution to inertia
- Preventing adverse control interactions

High Penetration of Power Electronic Interfaced Power Sources and the Potential Contribution of Grid Forming Converters Technical Report

Grid-Coupled Inverters

Control Types

	Current Controlled		Voltage Controlled		
	Grid Following	Grid Supporting	Grid Leading	Grid Forming	
Type of Source	Constant current source	Controlled current source	Fixed voltages source	Controlled voltage source behind an impedance	
Application	Power feed-in	Power feed-in and provison ancillary grid services	Island grids with single voltage source	Interconnected systems with multiple sources	
		State of the art		Required for future grids	

Testing Grid-Forming Converters / GFM Benchmark Initiative

OMPISO COL

GFM Benchmark Initiative

Motivation and Background

- Many research activities on grid forming converters in the recent years
- First manufacturers offer grid forming devices
- First demo-Projects are planned and installed
- Grid forming capabilities will be part of new grid codes
- Numerous grid-forming converters are expected to be installed soon!

But...

- There is no general specifications of GFM behaviour yet
- Consequence: different interpretations of GFM behaviour by different manufacturer

GFM Benchmark Initiative

Cross-Vendor Measurements of Grid Forming Converters

Mission

- Analysis of the current state of available GFM converters.
- Collection of experience with GFM conformity testing.
- Identification of development needs for GFM in the context of system stabilization.

Approach

- Elaboration of a GFM black box testing procedure. ([x] completed)
- Scalable GFM testing campaign open for interested vendors ([...] ongoing)
- Publication of anonymized results (] upcoming)

Partners/Sponsors

- All 4 German TSOs
- 10+ individual inverter manufacturers (10 kW to 4.5 MW)

Want to join the initiative? Contact us!

More information:

GFM Benchmark Initiative

A Win-Win-Win Situation

TSO's benefits

- Learnings about state of the art of GFM converters
- Learnings about different manufacturer interpretations for GFM behaviour
- Base for the definition of future GFM requirements
- Base for the definition of future conformity assessment methods

Manufacturer's benefits

- Preparation for upcoming inertia markets
- Feedback on the performance of their GFM product
- Feedback on possible further development needs
- Learnings about possible future test and conformity assessment methods
- Possibility to discuss requirements, limitations and test methods with system operators and research

Fraunhofer ISE's benefits

- Practical feedback on the developed test methods
- Practical lab experience in testing GFM converters
- Input for further research topics regarding GFM converter control and their testing

Overview

Voltage source properties

Contribution to power quality

Contribution to power quality

Loading the grid with a nonlinear/asymmetric load

- Comparing the voltage quality with and without the GFC
- \rightarrow Volage quality must improve with GFC in operation

Asymmetric Loads

Calculation of the unbalance factor

$$a_{\rm unb} = \frac{V_-}{V_+} \cdot 100\%$$

• the unbalance factor must improve with GFC in operation

 $\Delta a_{unb} = a_{unb,GFC} - a_{anb,wo \ GFC} < 0$

Harmonics

• Calculation of the THD of the grid Voltage

$$THD_{u,Grid} = \frac{\sqrt{\sum_{h=2}^{50} \widehat{U}_h^2}}{\widehat{U}_1}$$

• The THD with GFC must improve

 $\Delta THD_u = THD_{u,GFC} - THD_{u,wo\ GFC} < 0$

Contribution to system inertia and damping

Test Methods

Goal: Determine the effective inertia constant black-box testing

$$T_{A} = \frac{\Delta P \cdot f_{0}}{P_{N} \cdot |RoCoF|} \qquad T_{A} = 2 \cdot H$$

Parametrization recommendation for the DUT

$$T_{\rm A} = 25 \, {\rm s}$$
 (*H* = 12.5 s

Test runs

Test	P _{GFC,Set} [pu]	RoCoF[Hz/s]	Expected ΔP
1	0.3	-0.5	0.2
2	0.5	-1.0	0.5
3	0.5	0.5	-0.2
4	1	1.0	-0.5

Method 1 (RoCoF-based inertia measurement)

Method 2 (load-based inertia measurement)

Measurements and analysis

Method 1 (RoCoF-based inertia measurement)

Method 2 (load-based inertia measurement)

Unsymmetrical settling behaviour for pos./neg. RoCoFs

Load-based method 2: Exemplary measurement results ($P_{set} = 0.3 \text{ pu}$, RoCoF = $\pm 0.4 \text{ Hz/s}$)

©Fraunhofer ISF

• Slow settling (> 3 s)

Fraunhofer ISE

Wirkleistung

--- Event

PLL Frequenz

25

• Fast settling (< 0.25 s)

Active powerringing for pos. RoCoFs

--- Endwert der Frequenz gemäß der Versuchsnumme

Berechnetere RoCo

RoCoF gemäß der Versuchs

RoCoF-based method 1: Exemplary measurement results ($P_{set} = 0.3 \text{ pu}$, $P_{Load} = 0.5 \text{ pu}$)

Findings

- Methods 1 & 2 show comparable accuracy for the analysed $T_{\rm A}$
- Method 2 has transient measurement artefacts due to the dynamics of the frequency measurement.

DUT 2

Behaviour during critical grid events

Overload and fault behaviour (I)

Over and under voltage

- Classical OVRT/UVRT testing
- DUT must show:
 - stable operation
 - instantaneous voltage support

Fast RoCoF

50.0

49.5

48.5

48.0

15

- Exposure to high RoCoF values up to ± 4 Hz/s for 0.25 s.
- DUT must show:
 - stable operation
 - grid-supporting active power

star.

reac.en

20

25

30

Zeit in s

35

40

Exposure to high phase jumps of up to $\pm 90^{\circ}$.

- DUT must show:
 - stable operation
 - instantaneous grid-support

Overload and fault behaviour (II)

System split simulation

- Combined fault: Phase jump (20°) + RoCoF profile (according to ACER-proposal for RfG 2.0)
- DUT must show:
 - no tripping.
 - Ideally grid-supporting active power

Source: European Union Agency for the Cooperation of Energy Regulators ACER, "NC RfG DC Recommendation: Annex 1 – Amended RfG Regulation, Dec 2023

Grid-forming during overload

- 1) Grid-connected operation with parallel load $(P_{GEM} = 50 \% P_N, P_{Lord} = 40 \% P_N)$
- 2) Voltage dip applied
- 3) fault clearance by falling to island mode.
- DUT must restore voltage in island mode.

Overload and fault behaviour

Grid interactions

Grid interaction

Impedance spectroscopy – Test setup and procedure

Procedure

 $v_{exc} = 0.01 \cdot |v_{fund}| \cdot \sin(2\pi f_{exc}t + \varphi_{exc})$

- At different power setpoints
 - 0.25, 0.5, 0.75, and 1 of nominal power
- Use of 3 measurements per *f*_{exc}
 - $\varphi_{exc} = 0^{\circ}$, 120°, 240°
- Measurement of the current response at f_{exc}
 - Calculation of $\underline{Z}_{GFC}(f)$ and $\underline{V}_{GFC,i}(f)$ $(j \in [0^{\circ}, 120^{\circ}, 240^{\circ}], i \neq j)$

•
$$\underline{Z}_{ij}(f) = \frac{\underline{V}_i(f) - \underline{V}_j(f)}{\underline{I}_i(f) - \underline{I}_j(f)}$$

•
$$\underline{V}_{ij}(f) = \frac{\underline{V}_i(f) * \underline{I}_j(f) - \underline{V}_j(f) * \underline{I}_i(f)}{\underline{I}_j(f) - \underline{I}_i(f)}$$

Grid interaction

Closed loop stability test

Requirements

- GFM converter must stabilize the island grid (Voltage and Frequency) after disconnection
- Must react on a load step
- All functions are active (LFSM, Q(U), ...)

Procedure

- 1. The converter operates on the grid simulator with a connected load
- 2. By using the grid switch S_{Grid} the grid is disconnected, and the converter falls with the load into the island
- 3. After a stabilizing time, the load is increased by 10%
- 4. A second load step of 10 % is done

Phase	Duration [s]	P _{GFC,Set} [pu]	P _{Load} [pu]	State S _G
Initial Phase	10	0.9	0.45	closed
1	0	0.9	0.45	open
2	30	0.9	0.45	open
3	0	0.9	0.55	open
4	30	0.9	0.55	open
5	0	0.9	0.65	open
6	30	0.9	0.65	open

Resulting ΔP at disconnection from grid is -0.45 pu

Requirements

Summary

Thank You for Your Attention!

Dr. Soenke Rogalla soenke.rogalla@ise.fraunhofer.de Roland Singer roland.singer@ise.fraunhofer.de

Department Power Electronics and Grid Integration Fraunhofer ISE, Freiburg www.ise.fraunhofer.de/power-electronics Want to get involved? Contact us!

GFM Benchmark Initiative

Energy-Storage Enhanced STATCOMs for Wind Power Plants

Fangzhou Zhao Aalborg University

ENHANCED STATCOM

Energy storage + power electronics technology

Hitachi Energy Orsted

Enhanced STATCOM (E-STATCOM) = Energy Storage + STATCOM, enabling grid-forming (GFM) control

• E-STATCOM can 1) enhance operation performance of wind power plant, 2) handle grid codes and 3) provide grid services

WHY E-STATCOM? Demand of Offshore Wind Power

Full decarbonisation requires electrification which will increase electricity demand by 150% EU electricity production and consumption by source¹, TWh

04:51:30 Aug 24, 202

WHY E-STATCOM? Challenges of more and more WPPs

Installed capacity of wind power in Denmark versus time [1]

Tendency in DK

- Capacity grows significantly (now over 7 GW)
- Average capacity per turbine of offshore is over 4 times than onshore now
- Grid becomes weaker for offshore wind power plant (WPP)

Instability challenge

- 8 Hz SSO in Scotland (24 Aug. 2021) [2] related to *decreased system strength* characterized by high voltage sensitivity [3]
- Hornsea One offshore WPP (9 Aug. 2019) system (voltage) collapse and de-loading after a grid disturbance due to insufficient damping [4]

[1] B. Tranberg, K. Tranberg and D. Michalco, "Statistics on wind turbines in Denmark." [Online]. Available: https://turbines.dk/statistics/

Time

- [2] National Grid ESO, "ESO Operational Transparency Forum (3rd November 2021)." [Online]. Available: https://www.nationalgrideso.com/document/266861/download
- [3] S. Gordon, Q. Hong, and K. Bell, "Implications of reduced fault level and its relationship to system strength: a Scotland case study," CIGRE Session 2022.

[4] National Grid, "Appendices to the Technical Report on the events of 9 August 2019." UK, Sep. 2019, [Online]. Available: https://www.ofgem.gov.uk/sites/default/files/docs/2019/09/eso_technical_report__appendices__final.pdf

CONCEPT OF E-STATCOM

MMC + energy storage system

System layout

- Modular multilevel converter (MMC)
 - Scalability, reduced harmonic distortion and low switching loss
- Integrated energy storage system at DC-link with supercapacitors
 - *High power density* and scalability for *fast* active power response of GFM
- Separation of MMC and energy storage
 - Customized specification of valve room and energy storage room for *reliability*, **safety** and *flexibility of maintenance*
 - Able to switch to STATCOM with only MMC
- Besides voltage regulation, more services can be enabled by energy storage with GFM

POTENTIAL SERVICES/CAPABILITIES

Enabled by energy storage to support WPP

Battery	Super- capacitor	Service (E-STATCOM)	Capability (E-STATCOM)	Ope (WPI	ration Mode P)
		Active sub-synchronous resonance damping	Actively stabilize WPPs under varying grid strengths and enhance the voltage stiffness to prevent adverse interactions or oscillations	Grid-	connected mode
		Selective harmonic damping	Selectively dampen harmonic voltages at the POI of WPP with enhanced passivity-based design of harmonic resistances		
		Inertial response	Use the energy storage system to provide inertial response for slow down the rate of change of frequency (RoCoF)		
		System strength support	Provide grid strength support by limiting the consequences of power system events		
		Imbalance arbitrage	Provide additional capacity to compensate/balance wind forecast error and to address ramping issues		
		Frequency response	High- and low-frequency response to support the grid and the islanded WPP without the need for partial de-loading of WTs	Ŀ	slanded mode
		Black start	Charge the local transmission system and enable the WPP to operate in the islanded mode with block loads		
		Soft-charging	Energize the cable network within WPP and provide the auxiliary power supply in the event of grid outage		

A A U

INERTIAL RESPONSE

Comparison with synchronous condenser with flywheel (SC-FW)

5

5

7

ACTIVE DAMPING Enhance stability of WPP

To demonstrate the enhanced stability with E-STATCOM, 3 cases are compared

- Case I only offshore WPP (E-STATCOM disconnected)
- Case II offshore WPP + a grid-following STATCOM (without energy storage)
- Case III offshore WPP + E-STATCOM
- Which case is the most stable?

ACTIVE DAMPING Small-signal modeling

Impedance modeling [1]

- Converter dynamics admittance models in frequency-domain
- Black-box model of cables frequency scans and vector fitting
- Wind power plant aggregation based on parameter scaling

Stability analysis

- Impedance ratio $\mathbf{L}(s) = \mathbf{Z}_{g}(s) \mathbf{Y}_{e}(s)$
- Stability margin of eigenloci L(jω) the minimal vertical distance from (-1,0) to the eigenloci [2]
- Pole analysis of $[\mathbf{I} + \mathbf{Z}_{g}(s)\mathbf{Y}_{e}(s)]^{-1}$

[1] F. Zhao, X. Wang, Z. Zhou, L. Harnefors, J. R. Svensson, L. Kocewiak, M. Gryning, "Control Interaction Modeling and Analysis of Grid-Forming Battery Energy Storage System for Offshore Wind Power Plant,"
 [2] IEEE Trans. Power Syst., vol. 37, no. 1, pp. 497-507, Jan. 2022.

O. N. Gasparyan, Linear and nonlinear multivariable feedback control: a classical approach. John Wiley & Sons, 2008, pp. 100-117.

ACTIVE DAMPING

Stability margin analysis

Case studies

- Case I GFL-WPP (STATCOM disconnected)
- Case II GFL-WPP + GFL-STATCOM
- Case III GFL-WPP + GFM-STATCOM

Stability margin of Nyquist plot

- The vertical distance from (-1,0) to the eigenloci
- Longer distance, wider stability margin

Comparison of 3 cases (SCR=2 for WPP)

- GFL-STAT. slightly enhances stability (case I & II)
- GFM-STAT. offers much more margin than GFL-STAT.

ACTIVE DAMPING

Closed-loop pole analysis

Case I – E-STATCOM disconnected

- Dominant poles p_{WPP}
- As WPP PLL bandwidth increases, system
 becomes unstable in a weak grid

Comparison of p_{WPP} in 3 cases

- Case II adds limited damping (< 20%)
- Case III (GFM) offers more damping (> 100%), and the benefit is more obvious in weaker grids
- Improves system strength for WPP

Grid	Case I – ζ_{WPP}	Case II – ζ_{WPP}	Case III – ζ_{WPP}
SCR=2.00	0.097	0.105 (8.2%)	0.184 (89.7%)
SCR=1.88	0.085	0.097 (14.1%)	0.187 (120%)
SCR=1.79	0.076	0.088 (15.8%)	0.189 (149%)
SCR=1.71	0.066	0.079 (19.7%)	0.192 (191%)
SCR=1.63	0.057	0.067 (17.5%)	0.195 (242%)

ACTIVE DAMPING

Electric Power Systems Research, vol. 212, p. 108449, Nov. 2022.

EMT simulation analysis

• Case I – only offshore WPP; Case II – offshore WPP + a GFL-STATCOM; Case III – offshore WPP + E-STATCOM

E-STATCOM enhances stability of WPP

- Control bandwidth tuned at 1 s
- Case I and case II are unstable
- Case III with GFM is more robust

E-STATCOM improves response of WPP

- Control reference of WPP changed at 1 s
- Case I and II show obvious power oscillations
- Case III with GFM enhances power controllability

Time (s)
[1] F. Zhao, X. Wang, Z. Zhou, Ł. Kocewiak, and J. R. Svensson, "Comparative study of battery-based STATCOM in grid-following and grid-forming modes for stabilization of offshore wind power plant,"

SELECTIVE HARMONIC FILTERING

Harmonic mitigation at POI for grid code compliance

SELECTIVE HARMONIC FILTERING

Harmonic mitigation at POI for grid code compliance

Selective harmonic filtering based on impedance shaping

- Shape an equivalent *low resistance* of E-STATCOM at harmonic frequency, e.g., 5th, 7th order harmonics
- Shape a negative inductance at harmonic frequency to compensate the inductance of transformer
- Create a low-resistance damping branch (harmonic sink [1]) for WPP

SELECTIVE HARMONIC FILTERING

Passivity-based controller design

FAST FAULT CURRENT RESPONSE

Near instantaneous response to voltage disturbance

FAST FAULT CURRENT RESPONSE

Near instantaneous response to voltage disturbance

Reactive current response of grid-forming

• Reactive current $I_a \propto$ voltage change ΔV [1]

$$I_q = \frac{V - E \cos \theta}{X} \approx \frac{1}{X} \Delta V$$
Assumptions
• High X/R ratio
• $\cos \theta \approx 1$

Possible ranges of effective reactance [2]

Effective reactance	Min (p.u.)	Default (p.u.)	Max (p.u.)	Equivalent <i>k</i> factor
$X_{\rm Eff,unit}$	0.17	0.25	0.27	5.9 4 3.7
$X_{\rm Eff,unit\ or\ plant}$	0.25	0.33	0.35	4 3 2.8
$X_{\rm Eff, plant}$	0.4	0.48	0.50	2.5 2.1 2

TAKEAWAY Enhance STATCOM

Grid-forming enabled by energy storage

- MMC + supercapacitors
- Multiple functionalities
 - Flexible inertial response
 Active damping
 System strength support
 Selective harmonic filtering
 Fast fault current response

Thank you and questions

Fangzhou Zhao

AAU

ENERGY

